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Abstract. The electronic Hamiltonian is used to derive the equations of motion for the one-
band density matrix in the six-dimensional configuration space. Projecting the Hamiltonian
onto a local basis makes it possible to decompose the Coulomb interaction into a contact and a
monopole–monopole part. An approach is presented which allows us to identify the two parts as
scattering terms and self-consistent fields in the limiting case of the Boltzmann transport equation.
The approach does not assume spatial homogeneity and includes (i) the self-consistent field and
(ii) local electron–electron collision terms and (iii) permits us in the extension to a two-band
model to incorporate consistently impact ionization in a form analogous to the electron–electron
scattering term.

As semiconductor devices continue to shrink in size theoretical descriptions of transport
processes on a microscopic level become more and more important. In applications this
issue is addressed by solving the semiclassical Boltzmann equation for the most part using
the Monte Carlo method [1–4]. On the other hand, much work has been devoted to a
quantum mechanical derivation of the Boltzmann equation and its various generalizations
within the framework of non-equilibrium Green function theory or density matrix theory
(for a discussion of the differences between the two-time Green functions and the one-time
density matrices see [5]). These investigations extend from the inclusion of the interband
density matrix in the regime of coherent optics over the consideration of higher derivatives of
the scalar potential and the band structure in the drift term of the Boltzmann equation to the
extension of the Boltzmann collision integrals to the non-Markovian regime. An important
aspect in most cases is the treatment of the Coulomb interaction. In this respect different
approaches have been pursued in the literature. In density matrix theories formulated in the
Wannier basis after a multipole expansion in the spirit of the tight-binding approximation
[6] mostly the monopole–monopole term [7–10] has been considered, neglecting the contact
term where all Wannier functions are centred around the same site; the contact term has
been estimated in [11] to be the leading contribution. The monopole–monopole term
leads in a time-dependent Hartree decoupling of the equations of motion on the four-
point level to the self-consistent field, and this approach is well suited for the examination
of spatially inhomogeneous situations. Moreover, a controlled truncation scheme beyond
simple factorizations of multi-point density matrices has been recently proposed [12] which
permits us in the regime of coherent optics to calculate exactly the susceptibility to any given
order in the optical field. However, no irreversible contributions have been included up to
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now (or only in terms of constant relaxation times); these are essential in intraband dynamics,
this being the focus of this work. In contrast, in Green function theory a decomposition
scheme into self-consistent fields and scattering contributions has been introduced for
general two-body potentials in spatially inhomogeneous systems [13, 14]. There, however,
semiconductors as characterized by the periodic lattice potential and the many-band structure
are not treated. As a consequence the problem of modelling scattering mechanisms such as
impact ionization, which do not conserve the number of quasi-particles, consistently with
local electron–electron collisions and the self-consistent field does not arise. In addition,
in [13] the picture of local collisions has been judged not to be applicable to the long-
range Coulomb interaction. On the other hand, approaches based on a non-local basis,
which address the Coulomb interaction in semiconductors in terms of particle collisions
after factorization into two-point functions and performing the Markov approximation,
are restricted to spatially homogeneous systems [15–19]. Hence, a closed microscopic
derivation of semiconductor transport equations, which is able to include consistently all
relevant scattering processes such as electron–electron collisions and impact ionization as
well as self-consistent fields arising in spatially inhomogeneous situations, is still lacking.
It is therefore the aim of this work to present an approach which allows us to incorporate
all the aspects mentioned above.

As a theoretical framework the density matrix approach projected onto Wannier
functions will be adopted in this work since this formulation is well suited for spatially
inhomogeneous situations typically encountered in transport experiments. Furthermore,
within this approach localization properties of the Wannier functions have been successfully
used to decompose the effect of external fields into transition and transport processes in a
two-band semiconductor [20]. A similar decomposition based on a local basis is possible
in the contribution of the Coulomb interaction to the second-quantized Hamiltonian under
the assumption that the Wannier functions are sufficiently localized in the spirit of the tight-
binding approach. It consists of the parts of the Coulomb matrix elements where all four
Wannier functions are centred around the same site [11] and the multipole expansion of
the remaining matrix elements [6] where only the monopole–monopole contribution as the
leading term will be retained. The resulting Hamiltonian for electrons in one conduction
band without spin–orbit interaction and under the influence of an external scalar potential
8ex is

H1 = Hc +Wee,c +Wee,m–m (1)

Hc = Hc,0+Hc,8ex =
∑
i,j

∑
σ

hc,ij c
†
σ icσj (2)

hc,ij = 1

N

∑
k

εc(k) eik·(Ri−Rj ) − e8ex(Ri , t)δi,j (3)

Wee,c = 1

2
Iee
∑
i

∑
σ

c
†
σ ic
†
−σ ic−σ icσ i (4)

Iee =
∫

d3r

∫
d3r ′|wc(r)|2 e2

4πε0ε|r − r′| |wc(r
′)|2 (5)

Wee,m–m = 1

2

∑
i 6=j

∑
σ,σ ′

e2

4πε0ε|Ri −Rj |c
†
σ ic
†
σ ′j cσ ′j cσ i (6)

where i and j denote site indices of the Wannier functions andσ = ± 1
2 the spin label.

N is the number of unit cells in the crystal,εc(k) the electron energy with respect to the
conduction band edge,wc(r) the Wannier function in the conduction band centred around
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the origin andε the dielectric constant and summations overk are confined to the first
Brillouin zone. c†σ i and cσi refer to creation and annihilation operators of electrons at site
Ri with spin labelσ , respectively. Furthermore, electron-initiated impact ionization will be
considered as an additional mechanism which affects electron transport in the conduction
band. Other interactions arising in a two-band model such as electron–hole scattering
are neglected for brevity because the inclusion of impact ionization and electron–electron
interaction is sufficient for the main purpose of this work, i.e. the derivation of a scheme
for the decomposition of the Coulomb interaction into self-consistent fields and scattering
terms. The contributions of the two-band Hamiltonian in the electron–hole picture necessary
to include impact ionization are

H2 = Hv +WII,c +WII,m–m (7)

Hv = Hv,0+Hv,8ex =
∑
i,j

∑
σ

hv,ij d
†
σ idσj (8)

hv,ij = 1

N

∑
k

(Eg + εv(k)) eik·(Ri−Rj ) + e8ex(Ri , t)δi,j (9)

WII,c = III
∑
i

∑
σ

c
†
σ ic
†
−σ id

†
−σ icσ i + I ∗II

∑
i

∑
σ

c
†
σ id−σ ic−σ icσ i (10)

III =
∫

d3r

∫
d3r ′|wc(r)|2 e2

4πε0ε|r − r′|w
∗
c (r
′)wv(r′) (11)

WII,m–m = 0 (12)

with Eg denoting the band gap,εv(k) the hole energy measured positively with respect
to the valence band edge,wv(r) the Wannier function in the valence band centred around
the origin andd†σ i (dσi) the creation (annihilation) operator of a hole at siteRi with spin
label σ . The first term on the right-hand side of equation (10) describes the creation of an
electron–hole pair and the other term refers to the corresponding inverse process, i.e. Auger
recombination. The monopole–monopole contributionWII,m–m in equation (12) cancels
due to the orthogonality of the Wannier functions. For applications in the transport regime
(compare e.g. [1]) the static dielectric constant of the semiconductor should be taken for
ε in equation (6), while it is suggested to regard the integralsIee in equation (4) and
III in equation (10) as adjustable parameters. Screening effects and modulations ofε in
the integralsIee and III do not therefore have to be known explicitly when applying this
procedure for practical applications. This procedure is also supported by the successful
description of impact ionization with the use of a constant, wave-vector independent matrix
element [3, 4], but differs from approaches based on a non-local basis where wave-vector
dependent matrix elements are employed [21, 22]. (For a further discussion of the screening
problem see [9, 19], and references therein.)

Setting up the Heisenberg equations of motion on the two-point level with the
HamiltonianH1+H2 of equations (1) and (7) yields

−ih̄
d

dt
c
†
σ icσj +

∑
l

hl,j c
†
σ icσ l −

∑
l

hl,ic
†
σ lcσj

− e2

4πε0ε

∑
σ ′

∑
l

′
(

1

|Rl −Ri | −
1

|Rl −Rj |
)
c
†
σ ′lc
†
σ icσj cσ ′l

= Ieec†σ ic†−σ ic−σ icσj − Ieec†σ ic†−σj c−σj cσj
+III c†σ ic†−σ id†−σ icσj − I ∗II c†σ id−σj c−σj cσj
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−(III c†σ ic†−σj d†−σj cσj − I ∗II c†σ id−σ ic−σ icσj )
−(III c†−σj c†σ id†σj c−σj − I ∗II c†−σ idσ icσj c−σ i) (13)

where
∑′

l means the sum with the termsl = i and l = j omitted. The next step is to take
the expectation value of equation (13). Then the fact that the four-point functions on the
right-hand side always contain, in contrast to the corresponding terms on the left-hand side,
three operators acting on the same site suggests a higher degree of correlation. Therefore
it is taken as a motivation for factorizing the terms on the left-hand side while keeping
those on the right-hand side. Before deriving the equations of motion for the remaining
four-point functions we will identify the self-consistent fields and transform the equations
into the Wigner representation since we want to recover the Boltzmann equation as limiting
case. This procedure is well known [9] and consists of five steps: (i) a time-dependent
Hartree decoupling according to〈c†σ ′lc†σ icσj cσ ′l〉 ≈ 〈c†σ ′lcσ ′l〉〈c†σ icσj 〉 neglecting the Fock
(or exchange) term, (ii) a transition to the spatial continuum by virtue of the band-limited
sampling procedure〈c†σ icσj 〉  Cσ (r1, r2, t), (iii) an identification of the self-consistent
field

8in(R, t) = 1

4πε0ε

∫
d3R′

%(R′, t)
|R−R′| (14)

which satisfies the Poisson equation

εε018
in = % (15)

with %(R′, t) = −e∑σ ′ Cσ ′(R
′,R′, t), (iv) an introduction of relativex = r2 − r1 and

centreR = (r2+r1)/2 coordinates, and (v) a Fourier transform with respect to the relative
coordinatex

fc,σ (R,k, t) =
∫

d3x Cσ (R,x, t)e−ik·x =
∑
k′
〈c†σ2k−k′cσk′ 〉 e2 i(k′−k)·R (16)

where in the last step creation and annihilation operators with respect to Bloch functions have
been introduced [20] and the time dependence of the expectation value has been suppressed
for the sake of brevity. The definition of the hole distribution function is analogous to
equation (16) [20]. Restricting the gradient expansion of the band energy and the scalar
potential to the first term one arrives at

(∂/∂t + vc(k) · ∇R − (e/h̄)E‖(R, t) · ∇k)fc,σ (R,k, t)
= (∂fc,σ /∂t)ee,c + (∂fc,σ /∂t)II,c (17)

where vc(k) = ∇kεc(k)/h̄ and E‖(R, t) = −∇R8ex(R, t) − ∇R8in(R, t). Note that
there are situations as encountered in bounded semiconductors where a gradient expansion
of the scalar potential is not possible and the density matrixCσ (r1, r2, t) has to fulfill
boundary conditions which give e.g. rise to surface quantization in MOSFET (metal oxide
semiconductor field effect transistor) structures [9, 23]. The contributions arising from the
contact terms are(
∂fc,σ

∂t

)
ee,c

= i

h̄

∑
k̃,k̃′,k̂,k̂′

(Ĩee ei(k̂+k̂′−k̃−k̃′)·R δ2k,k̂+k̃′+k̃−k̂′ 〈c†σ k̃′c
†
−σ k̃c−σ k̂′cσ k̂〉

−Ĩee e−i(k̂+k̂′−k̃−k̃′)·R δ2k,k̂+k̃′+k̃−k̂′ 〈c†σ k̂c
†
−σ k̂′c−σ k̃cσ k̃′ 〉) (18)
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with Ĩee = Iee/N and(
∂fc,σ

∂t

)
II,c

= i

h̄

∑
k̃,k̃′,k̂,k̂′

(ĨII ei(k̂−k̂′−k̃−k̃′)·R δ2k,k̂+k̃′+k̃+k̂′ 〈c†σ k̃′c
†
−σ k̃d

†
−σ k̂′cσ k̂〉

−Ĩ ∗II e−i(k̂−k̂′−k̃−k̃′)·R δ2k,k̂+k̃′+k̃+k̂′ 〈c†σ k̂d−σ k̂′c−σ k̃cσ k̃′ 〉)

− i

h̄

∑
k̃,k̃′,k̂,k̂′

(ĨII ei(k̂−k̂′−k̃−k̃′)·R δ2k,k̂+k̃′−k̃−k̂′ 〈c†σ k̃′c
†
−σ k̃d

†
−σ k̂′cσ k̂〉

−Ĩ ∗II e−i(k̂−k̂′−k̃−k̃′)·R δ2k,k̂+k̃′−k̃−k̂′ 〈c†σ k̂d−σ k̂′c−σ k̃cσ k̃′ 〉)

− i

h̄

∑
k̃,k̃′,k̂,k̂′

(ĨII ei(k̂−k̂′−k̃−k̃′)·R δ2k,k̂+k̃′−k̃−k̂′ 〈c†−σ k̃c
†
σ k̃′
d
†
σ k̂′
c−σ k̂〉

−Ĩ ∗II e−i(k̂−k̂′−k̃−k̃′)·R δ2k,k̂+k̃′−k̃−k̂′ 〈c†−σ k̂dσ k̂′cσ k̃′c−σ k̃〉) (19)

with ĨI I = III /N . It remains to derive the Heisenberg equation for operators such as
y(t) ≡ c†

σ k̃′
c
†
−σ k̃c−σ k̂′cσ k̂

d

dt
y(t) = − i

h̄
[y(t),Hc,0+Wee,c] = −i�y(t)+ 0(t) (20)

using the abbreviation

� ≡ �(k̂, k̂′; k̃, k̃′) = 1

h̄
(εc(k̂)+ εc(k̂′)− εc(k̃)− εc(k̃′)). (21)

Here we have neglected the influence of the external potential as well as the monopole–
monopole Coulomb interaction.0(t) contains four-point and six-point operators. Their
expectation values are factorized into products of two-point functions with the result

0(t) = i

h̄
Ĩee
∑
q,q′

δk̃+k̃′,q+q′ 〈c†σq′cσ k̂〉〈c†−σqc−σ k̂′ 〉 + · · · (22)

and similar expressions for the other terms. Under the assumption that there is no initial
correlation the solution of equation (20) is given by

y(t) =
∫ t

t0

0(t − (t ′ − t0)) e−i�(t ′−t0) dt ′

≈ 0(t)
∫ t

t0

e−i�(t ′−t0) dt ′ = πδ−(�)0(t) (23)

where δ−(�) → δ(�) − (i/π)(P/�) for t0 → −∞ with the principal valueP . In the
second line the Markov approximation has been applied by approximating the prefactor of
the oscillating term in the integral overt ′ with its value att ′ = t0 which makes the structure
of equation (18) local in time [24]. Inserting the results of the equations (23) and (22) into
equation (18) yields after rearranging the summations(
∂fc,σ

∂t

)
ee,c

= π

h̄
Ĩ 2
ee

∑
q,q′

∑
k′,k′′,k̂′

δ−(h̄�(q + q′ − k̂′, k̂′; 2k′′ − q′, 2k′ − q))δk+k̂′,k′+k′′

×e2 i(q−k′)·R 〈c†−σ2k′−qc−σq〉e2 i(q′−k′′)·R〈c†σ2k′′−q′cσq′ 〉 + · · ·
≈ π

h̄
Ĩ 2
ee

∑
k′,k′′,k̂′

δ−(h̄�(k′ + k′′ − k̂′, k̂′;k′′,k′))δk+k̂′,k′+k′′
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×
∑
q

e2 i(q−k′)·R 〈c†−σ2k′−qc−σq〉
∑
q′

e2 i(q′−k′′)·R〈c†σ2k′′−q′cσq′ 〉 + · · ·

= π

h̄
Ĩ 2
ee

∑
k′,k′′,k̂′

δ−(h̄�(k, k̂′;k′′,k′))δk+k̂′,k′′+k′fc,−σ (R,k′, t)fc,σ (R,k′′, t)

+ · · · . (24)

In the second line an approximation analogous to the Markov approximation has been
applied in the spatial domain. It consists of approximating the prefactor of the oscillating
terms in the sums overq andq′ with its values atq = k′ andq′ = k′′. As a consequence
the definition of equation (16) for the distribution functions is recovered and the structure
of the scattering term has become local in time and space. Collecting all terms not given
explicitly in equation (24) and observing that the odd part ofδ−(�) cancels throughout
finally leads to

(∂/∂t + vc(k) · ∇R − (e/h̄)E‖(R, t) · ∇k)fc(R,k, t) = (∂fc/∂t)ee,c + (∂fc/∂t)II,c (25)

with(
∂fc

∂t

)
ee,c

=
∑
k′,k′′,k̂′

2π

h̄
Ĩ 2
eeδ(εc(k

′′)+ εc(k′)− εc(k̂′)− εc(k))δk′′+k′,k̂′+k

×{(1− fc(R,k, t))(1− fc(R, k̂′, t))fc(R,k′, t)fc(R,k′′, t)
−(1− fc(R,k′′, t))(1− fc(R,k′, t))fc(R, k̂′, t)fc(R,k, t)} (26)

where the limitt0→−∞ has been performed to obtain the energy-conserving delta function.
The spin indices have been dropped since distribution functions with opposite spins are equal
for the system which is described by the Hamiltonian specified through the equations (1)
and (7). The collision term due to electron-initiated impact ionization and its inverse process
is(
∂fc

∂t

)
II,c

=
∑
k′,k′′,k̂′

2π

h̄
|ĨI I |2δ(εc(k′′)+ εc(k′)+ εv(k̂′)+ Eg − εc(k))δk′′+k′+k̂′,k

×{(1− fc(R,k, t))fv(R, k̂′, t)fc(R,k′, t)fc(R,k′′, t)
−(1− fc(R,k′′, t))(1− fc(R,k′, t))(1− fv(R, k̂′, t))fc(R,k, t)}
−

∑
k′,k′′,k̂′

2π

h̄
|ĨII |2δ(εc(k)+ εc(k′)+ εv(k̂′)+ Eg − εc(k′′))δk+k′+k̂′,k′′

×{(1− fc(R,k′′, t))fv(R, k̂′, t)fc(R,k′, t)fc(R,k, t)
−(1− fc(R,k, t))(1− fc(R,k′, t))(1− fv(R, k̂′, t))fc(R,k′′, t)}
−

∑
k′,k′′,k̂′

2π

h̄
|ĨI I |2δ(εc(k′′)+ εc(k)+ εv(k̂′)+ Eg − εc(k′))δk′′+k+k̂′,k′

×{(1− fc(R,k′, t))fv(R, k̂′, t)fc(R,k, t)fc(R,k′′, t)
−(1− fc(R,k′′, t))(1− fc(R,k, t))(1− fv(R, k̂′, t))fc(R,k′, t)}. (27)

The three summations in equation (27) can be interpreted as outscattering term, inscattering
term, and generation term, which is most easily seen when all products of two or more
distribution functions can be neglected. In this case equation (25) and the Poisson
equation (15) form a closed set of equations for the distribution functionfc and the self-
consistent potential8in.
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It is important to recall that in the extension of the Hamiltonian (1) to a two-band model
impact ionization enters only the contact termWc since contributions to the monopole–
monopole termWm–m cancel due to orthogonalization of the Wannier functions. Therefore
the analogy between e.g. electron–electron scattering and impact ionization, which apart
from the electron generation term only differ through the exchange of band indices, would be
destroyed by considering totally or in part the monopole–monopole contribution as scattering
term.

In conclusion, we have presented an approach for a closed derivation of the density
matrix dynamics which allows a consistent incorporation of all contributions of the Coulomb
interaction relevant for transport applications, i.e. (i) the self-consistent field arising in
spatially inhomogeneous situations, (ii) the local electron–electron scattering terms, and
(iii) impact ionization in a form analogous to the electron–electron collisions. The approach
is based on a formulation of the Hamiltonian in the Wannier basis which permits the
decomposition of the Coulomb interaction into a monopole–monopole term and a contact
potential provided that the Wannier functions are sufficiently localized. The decoupling
scheme for the different types of multi-point function in the equations of motion is motivated
by the different degree of spatial localization and is supported by the fact that it leads to
an analogous formulation of the different scattering mechanisms such as electron–electron
collisions and impact ionization.
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